
Safe Loading
A Foundation for Secure Execution of
Untrusted Programs

Mathias Payer, Tobias Hartmann, Thomas R. Gross
Department of Computer Science
ETH Zurich, Switzerland

2

Motivation

Kernel

Application code

3

Motivation

Kernel

Sandbox

Application codeld.so

Code

4

Sandbox

Motivation

Kernel

Sandbox

Application codeld.so

Code

5

Trusted RUntime Environment

Kernel

Sandbox

Trusted
loader

TRuE

application

library

library

...

6

Outline
● Motivation

● Attack and execution model

● Trusted Runtime Environment

● Evaluation

● Related work

● Conclusion

7

Attack constraints
● Attacker tries to escalate privileges with:

● Code injection

● Code reuse (ROP / JOP*)

● Data attacks

Code

Data

* ROP – Return Oriented Programming: Shacham, CCS'07
 JOP – Jump Oriented Programming: Bletsch et al., ASIACCS'11

8

Attack constraints
● Attacker tries to escalate privileges with:

● Code injection

● Code reuse (ROP / JOP*)

● Data attacks

● Application is killed on policy violation Code

Data

* ROP – Return Oriented Programming: Shacham, CCS'07
 JOP – Jump Oriented Programming: Bletsch et al., ASIACCS'11

X

9

Execution model
● Application is untrusted (not malicious)

● Symbol table and ELF information used in sandbox

● Secure execution uses
● Secure loader to bootstrap application

● Sandbox to protect from any code-based and data-based exploits

10

Outline
● Motivation

● Attack model

● Trusted Runtime Environment
● Security architecture

● Safe loading

● Sandbox & System call policy

● Implementation

● Evaluation

● Related work

● Conclusion

11

Kernel

Sandbox

Application

System call policy

TRuE

Security architecture

Secure
Loader

12

Secure loader

ld.so

regular sandbox

transl. ld.so

application

library

...

???

Secure loader

safe
sandbox

application

library

...

TRuE:Traditional loading:

late
interception

loader as
black box

13

Secure loader

ld.so

regular sandbox

transl. ld.so

application

library

...

???

Secure loader

safe
sandbox

application

library

...

TRuE:Traditional loading:

late
interception

loader as
black box

Information & safe sandbox instantiation

14

SFI sandbox

● Translates individual basic blocks
● Checks branch targets and origins
● Weaves guards into translated codeOriginal code Translated code

Dynamic translator

1

2

43

1'

2'

3'

Sandbox

Kernel

System call policy

15

SFI sandbox

● Translates individual basic blocks
● Checks branch targets and origins
● Weaves guards into translated codeOriginal code Translated code

Dynamic translator

1

2

43

1'

2'

3'

Sandbox

Kernel

System call policy

Protects from code-based and data-based attacks

16

TRuE: implementation
● Prototype implementation (open source)

● Focus on IA32 and Linux

● Concept works for any ISA and operating system

● Small trusted computing base

Code Comments

Secure loader 5,400 2,100

Sandbox 15,200* 3,200

*4,900 LOC for the translation tables

17

Outline
● Motivation

● Attack model

● Trusted Runtime Environment

● Evaluation
● Security discussion

● SPEC CPU2006 performance

● Related work

● Conclusion

18

Security discussion
● Two execution domains

● Privileged sandbox domain

● Unprivileged application domain (traps into sandbox)

● Sandbox ensures code integrity
● Protection from code-injection and return oriented programming

● Policy protects from jump oriented programming and data attacks

● Secure loader enables safe program instantiation
● Low complexity (bare bone functionality)

● API for requests from the application

19

Security discussion
● Two execution domains

● Privileged sandbox domain

● Unprivileged application domain (traps into sandbox)

● Sandbox ensures code integrity
● Protection from code-injection and return oriented programming

● Policy protects from jump oriented programming and data attacks

● Secure loader enables safe program instantiation
● Low complexity (bare bone functionality)

● API for requests from the application

Protects unmodified, binary
applications from attacks

20

SPEC CPU 2006 performance
● Benchmarks execute with well-defined policy

● On Ubuntu Jaunty

● Intel Xeon E5520 CPU at 2.27GHz

● GCC version 4.3.3

● Three configurations:
● native

● Secure loader (without sandbox)

● TRuE (secure loader plus sandbox)

21

SPEC CPU 2006 performance

Benchmark Secure
Loading

TRuE

400.perlbench -0.3% 85%

401.bzip2 -0.1% 4.9%

429.mcf -0.1% 0.5%

464.h264ref -0.3% 41%

433.milc 0.1% 3.7%

Average* -0.1% 15%

* Average is calculated over all 28 SPEC CPU2006 benchmarks

22

SPEC CPU 2006 performance

Benchmark Secure
Loading

TRuE

400.perlbench -0.3% 85%

401.bzip2 -0.1% 4.9%

429.mcf -0.1% 0.5%

464.h264ref -0.3% 41%

433.milc 0.1% 3.7%

Average* -0.1% 15%

* Average is calculated over all 28 SPEC CPU2006 benchmarks

Low performance impact

23

Outline
● Motivation

● Attack model

● Trusted Runtime Environment

● Evaluation

● Related work

● Conclusion

24

Related work
● System call interposition (Janus, AppArmor)

● Only system calls checked, code is unchecked

● Software-based fault isolation (Libdetox, Vx32, Strata)
● Only a sandbox is not enough, additional guards and system call

authorization needed, no loader information

● Static binary translation (Google's NaCL, PittSFIeld)
● Limits the ISA, static, special compilers needed

● Full system translation (VMWare, QEMU, Xen)
● Management overhead, data sharing problem

25

Outline
● Motivation

● Attack model

● Trusted Runtime Environment

● Evaluation

● Related work

● Conclusion

26

Conclusion
● TRuE protects from code-based and data-based exploits

● Secure loader extracts information

● Sandbox protects from code-based and data-based exploits

● Trusted secure loader increases security
● Application needs no privileges to map code executable

● Knowledge of program structure enables new guards

● TRuE protects unmodified applications in user-space

27

Questions?

?
http://nebelwelt.net/projects/TRuE/

28

Software based fault isolation

● Translates individual basic blocks
● Checks branch targets and origins
● Weaves guards into translated code

1 1'
2 2'
3 3'
… ...

Original code Code cacheMapping table

Dynamic translator

1

2

4
3

1'

2'

3'

R RX

Indirect control
flow transfers
use a dynamic
check to verify
target and
origin

29

Implementation alternatives
● Static binary translation

● No second protected domain

● No dynamic library/module support

● Restricted ISA

● Regular loader, hidden sandbox
● Sandbox hidden by modifying loader data-structures

● Loader treated as black-box

30

Malicious applications
● No information about internal control flow

● Coarse-grained protection at system call level

● Application can use CPU time (inside the app)
● System call policy protects from malicious system calls

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

